Independent Simulations of WFIRST Exoplanet Microlensing with MaBµLS

Matthew Penny (Ohio State University)

> Scott Gaudi (OSU)

Eamonn Kerins, Nick Rattenbury

(JBCA, Univ. Manchester)

Annie Robin

(Observatoire de Besançon)

WFIRST SDT Meeting, 17th May 2012

Overview

- 1. Simulating WFIRST
- 2. Results
- 3. Why are they lower than the interim report?

1. The Simulator - MaBµLS

Manchester-Besancon microLensing Simulator self-consistently:

- Draws microlensing events from stars in the Besancon Galactic model
- Calculates event rates by sampling from density, kinematic and mass distributions
- Generates planetary lensing models
- Simulates photometry with realistic image simulations

1. The Besancon Model

Robin et al 2003, Marshall et al 2006, Robin et al 2012

Galactic population synthesis model:

Incorporates:

- Bulge+bar, thin+thick discs, stellar halo
- IMF, SFR & Evolutionary tracks
- Stellar atmos models
- 3d dust model

Generates lists of stars and their properties

1. Image Simulations

Images are generated from Besancon star catalogues, PSF models and realistic zodiacal light

PSF is bandpass convolved Airy function + intra-pixel capacitance

1. Image simulations

Lensing events are added to images

Large PSF kernel for realistic blending (mostly!)

F087 W149

Reddening and PSF size make a difference

1. Why image simulation is important

1. What was simulated

- 7x72 day seasons
- 7 fields
- 15 min cadence 85s exposure W149/W169,
 12 hr cadence 290s exposure F087
- 0.18" pixels
- IDRM 7x4 H2RG, W149 1-2μm, low Interpixel capacitance
- DRM1 9x4 H2RG, W169 1-2.4µm, low IPC
- DRM2 6x2 H4RG-10, W169 1-2.4μm, high IPC

$$I = -0.4 \rightarrow 2.6$$

b = -3.2 \rightarrow -0.2

13x13 fields of 0.15'x0.15'

IDRM

DRM1

DRM2

2. Results

Figure of Merit

Design	M=1Mearth T=2yr	θ _E measured	HZ	Free floating	FoM
IDRM	4.88 ± 0.18	~4.2	0.26 ± 0.03	3.85 ± 0.07	~3.1
DRM1	5.86 ± 0.20	~5.1	0.35 ± 0.03	4.79 ± 0.09	~4.3
DRM2	6.42 ± 0.22	~5.8	0.52 ± 0.05	5.81 ± 0.09	~5.9
		θ _E Measured to <20% as proxy for mass measurement		Also requires 3 consecutive 3σ deviations from baseline	
Euclid	Not simulated, but a factor of ~3-4 lower				

A factor of ~25 lower than simulations for the Interim Report Why? See section 3

2. What does that get us?

Can look at yields assuming different planetary mass functions:

RV: Cumming et al 2010 Slope -0.3 T<2000d

μL: Cassan et al 2012 Slope -0.7 a~3AU

Cassan et al mass function implies close packing of orbits if extrapolated below Mp=5MEarth – Numbers on above plot assume it does not increase below this point

2. Measuring the mass function

Assumes only half of detected planets have measured masses

2. Measuring planetary parameters

2. Optimization for planet rate

OK. So where did all the planets go?

OK. So where did all the planets go?

Answer: We're not sure yet

3. Why?

Different simulations

- Different photometry simulations
- Different Galactic models
 - =Different event rates
 - =Different blending etc.

But we should be in the same ball park

3. Is there something wrong with MaBµL?

Bennett & Rhie (1996) say "If we require a minimum deviation of 4% from the standard point-lens microlensing lightcurve, then we find that more than 2% of all M_{Earth} planets ... in the lensing zone can be detected."

For bright enough sources MaBµLS finds 3-4% LZ detection efficiency

3. Is there something wrong with MaBµL?

Are we being too conservative with our photometry, backgrounds, systematics, blending, rejecting bad events, etc?

3. That leaves the Galactic model

Optical depth

Besancon optical depths, event rates and source counts lower by up to a factor of 2 than Han & Gould (1995) + other predictions.

Besancon roughly consistent with data, but so are other models

Does not explain entire difference

3. Conclusions

- MaBµLS simulations the most detailed microlensing sims carried out to date
- We still don't know where the discrepancy lies
- Galactic structure is important could still be uncertain by a factor of a few
- Need more data VVV may solve
- WFIRST exoplanet microlensing still measures the planetary mass function down to Mars mass